본문 바로가기

앙상블

[ML] MINITAB Decision Tree(CART), 앙상블(RF/Tree Net), Auto ML (2) 목차부트스트랩 샘플링(Bootstrap Sampling)주어진 데이터로부터 동일한 크기로 복원 추출된 데이터. 데이터 내에서 반복적으로 샘플을 사용하는 resampling 방법 중 하나로써 비용과 시간이 많이 드는 데이터 수집을 스스로 해결할 수 있는 샘플링 방법 집계(Aggregating)여러 분류 모델이 예측한 값들을 조합해서 투표(Voting)을 통해 하나의 결론을 도출하는 과정Hard Voting- 선거 투표와 같이 여러 개의 분류 모델에서 가장 많은 표를 받은 값을 예측으로 결정함Soft Voting       - 분류 유형 별로 확률을 구한 후 확률을 더한 값을 점수화하여 최대 점수를 가진 값을 예측값으로 결정함배깅(Bagging)Bootstrap과 Aggregating 을 합친 앙상블 기법으.. 더보기
[ML] MINITAB Decision Tree(CART), 앙상블(RF/Tree Net), Auto ML (1) 목차Decision Tree의사결정 규칙과 그 결과들을 트리 구조로 도식화하여 분류하는 통계적 분석 방법으로, 각 데이터들이 가진 속성들로부터 패턴을 찾아내서 분류 과제를 수행할 수 있도록 하는 머신러닝 모델ID3, C4.5, C5.0 알고리즘은 인공지능, 기계학습 분야에서 개발되어 발전 - 엔트로피/정보이득 등의 개념을 사용하여 분리 기준을 결정함CART, CHAID 알고리즘은 통계학 분야에서 개발된 알고리즘으로, 카이스퀘어/T검정/F검정 등의 통계분석기법을 사용하여 분류함 CART(Classification And Regression Tree)전체 데이터셋으로 두 개의 자식 노드를 생성하기 위해 모든 예측 변수를 사용하여 데이터 셋의 부분집합을 쪼갬으로써 트리를 생성함Minitab에서 Decision.. 더보기
[Paper Review] Improving Neural Architecture Search Image Classifiers via Ensemble Learning (1) 세 번째 논문 리뷰! 오늘은 앙상블 모델을 활용해 모델의 성능을 높이는 예제를 다룬 논문을 읽어보았다. 이번 리뷰는 원문을 번역해 이해했기 때문에 약간의 오류(?)가 있을 수 있다. 원문은 아래 링크에 첨부한다. https://arxiv.org/abs/1903.06236 Improving Neural Architecture Search Image Classifiers via Ensemble Learning Finding the best neural network architecture requires significant time, resources, and human expertise. These challenges are partially addressed by neural architecture s.. 더보기