본문 바로가기

Ai

[Paper Review] ConvLSTM, 시계열 기계학습을 이용한 예측 모델 이 카테고리에는 딥러닝 관련 논문을 읽고 간단하게나마 리뷰를 해보려고 한다. 처음 읽어본 논문은 시계열 자료를 활용한 해수면 온도 예측 딥러닝 모델이다. 본 포스팅은 아래 논문을 읽고 남긴 리뷰임을 밝힌다. https://doi.org/10.7780/kjrs.2020.36.5.3.7 목차 1. 서론 해수면 온도 예측이 주제인만큼 해수면 온도 상승의 파급력에 대해 설명한다. 해수면 온도는 해양-대기 순환 현상을 결정하는 중요한 변수이며, 다양한 요인들로 한반도 해역의 고수온 현상이 자주 발생하고 있다. 이에 따라 다양한 방법으로 해수면 온도 예측이 이루어지고 있는데, 대표적으로 수치모델과 자료중심(Data-driven) 모델을 사용한다. 수치모델에는 ROMS, NEMO와 같이 일사량, 해류 등의 입력자료로.. 더보기
[통계] 선형회귀와 알고리즘 (출처) edwith 모두를 위한 딥러닝, Sung, Kim H(x) = W * x (b = 0) ▣ 비용함수의 정의에 따라, W = 1, cost(W) = 1/3 *{(1*1-1)^2 + (2*1-2)^2 + (3*1-3)^2} = 0 W = 0, cost(W) = 1/3 *{(0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2} = 14/3 =4.67 W = 2, cost(W) = 1/3 *{(2*1-1)^2 + (2*2-2)^2 + (2*3-3)^2} = 14/3 =4.67 Gradient descent algorithm : 경사를 따라 내려가는 알고리즘 비용함수, 머신러닝 최소화 문제에 사용 W,b의 함수에 적용시켜 최소값을 산출 다수의 값을 포함하는 Cost function도 최소화 가능.. 더보기
[통계] 선형회귀 가설과 비용 함수 (출처) inflearn 모두를 위한 딥러닝 - 기본적인 머신러닝과 딥러닝 강좌, Sung Kim Predicting exam score: regression → 학생의 공부시간 대비 성적을 supervised learning하는 경우 Score 범위 : 0~100점 회귀분석을 통해 학습(training)시킴 Regression으로 모델 생성 ☞ 회귀분석 모델을 적용해 학습된 X값 (공부한 시간)을 바탕으로 Y값 (예상 점수)를 예측함 Regression (data) ▤ Linear Hypothesis : 많은 현상들이 linear 형태로 설명됨 공부를 많이 할 수록 시험 점수가 높아짐 집의 크기가 클 수록 가격이 올라감 ▤ 학습 : 그래프 상에서 Training 데이터에 잘 맞는 선을 찾는 것 2차원 .. 더보기