linear 썸네일형 리스트형 [통계] 선형회귀와 알고리즘 (출처) edwith 모두를 위한 딥러닝, Sung, Kim H(x) = W * x (b = 0) ▣ 비용함수의 정의에 따라, W = 1, cost(W) = 1/3 *{(1*1-1)^2 + (2*1-2)^2 + (3*1-3)^2} = 0 W = 0, cost(W) = 1/3 *{(0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2} = 14/3 =4.67 W = 2, cost(W) = 1/3 *{(2*1-1)^2 + (2*2-2)^2 + (2*3-3)^2} = 14/3 =4.67 Gradient descent algorithm : 경사를 따라 내려가는 알고리즘 비용함수, 머신러닝 최소화 문제에 사용 W,b의 함수에 적용시켜 최소값을 산출 다수의 값을 포함하는 Cost function도 최소화 가능.. 더보기 [Framework] Tensorflow로 선형회귀 구현하기 (출처) inflearn 모두를 위한 딥러닝, Sung kim 이론 (이전 포스팅 참고) 2019/10/03 - [bigdata/#Machine Learning] - Linear Regression의 Hypothesis와 cost 설명 Lab 2 ▤ 텐서플로우 구동 매커니즘 그래프 Build하기 Session 생성 후 Run Return/ Update의 실행 결과 출력 1. Bulid graph using TF operations #X and Y data x_train = [1, 2, 3] #전 포스트에서 다룬 간단한 그래프 y_train = [1, 2, 3] W = tf.Variable(tf.random_normal([1]), name = 'weight') #W와 b의 값을 정의 b = tf.Varia.. 더보기 이전 1 다음